\(\int x^2 (a+b \log (c (d+e \sqrt {x})^n)) \, dx\) [401]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 134 \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {b d^5 n \sqrt {x}}{3 e^5}-\frac {b d^4 n x}{6 e^4}+\frac {b d^3 n x^{3/2}}{9 e^3}-\frac {b d^2 n x^2}{12 e^2}+\frac {b d n x^{5/2}}{15 e}-\frac {1}{18} b n x^3-\frac {b d^6 n \log \left (d+e \sqrt {x}\right )}{3 e^6}+\frac {1}{3} x^3 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \]

[Out]

-1/6*b*d^4*n*x/e^4+1/9*b*d^3*n*x^(3/2)/e^3-1/12*b*d^2*n*x^2/e^2+1/15*b*d*n*x^(5/2)/e-1/18*b*n*x^3-1/3*b*d^6*n*
ln(d+e*x^(1/2))/e^6+1/3*x^3*(a+b*ln(c*(d+e*x^(1/2))^n))+1/3*b*d^5*n*x^(1/2)/e^5

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {2504, 2442, 45} \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {1}{3} x^3 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right )-\frac {b d^6 n \log \left (d+e \sqrt {x}\right )}{3 e^6}+\frac {b d^5 n \sqrt {x}}{3 e^5}-\frac {b d^4 n x}{6 e^4}+\frac {b d^3 n x^{3/2}}{9 e^3}-\frac {b d^2 n x^2}{12 e^2}+\frac {b d n x^{5/2}}{15 e}-\frac {1}{18} b n x^3 \]

[In]

Int[x^2*(a + b*Log[c*(d + e*Sqrt[x])^n]),x]

[Out]

(b*d^5*n*Sqrt[x])/(3*e^5) - (b*d^4*n*x)/(6*e^4) + (b*d^3*n*x^(3/2))/(9*e^3) - (b*d^2*n*x^2)/(12*e^2) + (b*d*n*
x^(5/2))/(15*e) - (b*n*x^3)/18 - (b*d^6*n*Log[d + e*Sqrt[x]])/(3*e^6) + (x^3*(a + b*Log[c*(d + e*Sqrt[x])^n]))
/3

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps \begin{align*} \text {integral}& = 2 \text {Subst}\left (\int x^5 \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx,x,\sqrt {x}\right ) \\ & = \frac {1}{3} x^3 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right )-\frac {1}{3} (b e n) \text {Subst}\left (\int \frac {x^6}{d+e x} \, dx,x,\sqrt {x}\right ) \\ & = \frac {1}{3} x^3 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right )-\frac {1}{3} (b e n) \text {Subst}\left (\int \left (-\frac {d^5}{e^6}+\frac {d^4 x}{e^5}-\frac {d^3 x^2}{e^4}+\frac {d^2 x^3}{e^3}-\frac {d x^4}{e^2}+\frac {x^5}{e}+\frac {d^6}{e^6 (d+e x)}\right ) \, dx,x,\sqrt {x}\right ) \\ & = \frac {b d^5 n \sqrt {x}}{3 e^5}-\frac {b d^4 n x}{6 e^4}+\frac {b d^3 n x^{3/2}}{9 e^3}-\frac {b d^2 n x^2}{12 e^2}+\frac {b d n x^{5/2}}{15 e}-\frac {1}{18} b n x^3-\frac {b d^6 n \log \left (d+e \sqrt {x}\right )}{3 e^6}+\frac {1}{3} x^3 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.96 \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {a x^3}{3}-\frac {1}{6} b e n \left (-\frac {2 d^5 \sqrt {x}}{e^6}+\frac {d^4 x}{e^5}-\frac {2 d^3 x^{3/2}}{3 e^4}+\frac {d^2 x^2}{2 e^3}-\frac {2 d x^{5/2}}{5 e^2}+\frac {x^3}{3 e}+\frac {2 d^6 \log \left (d+e \sqrt {x}\right )}{e^7}\right )+\frac {1}{3} b x^3 \log \left (c \left (d+e \sqrt {x}\right )^n\right ) \]

[In]

Integrate[x^2*(a + b*Log[c*(d + e*Sqrt[x])^n]),x]

[Out]

(a*x^3)/3 - (b*e*n*((-2*d^5*Sqrt[x])/e^6 + (d^4*x)/e^5 - (2*d^3*x^(3/2))/(3*e^4) + (d^2*x^2)/(2*e^3) - (2*d*x^
(5/2))/(5*e^2) + x^3/(3*e) + (2*d^6*Log[d + e*Sqrt[x]])/e^7))/6 + (b*x^3*Log[c*(d + e*Sqrt[x])^n])/3

Maple [F]

\[\int x^{2} \left (a +b \ln \left (c \left (d +e \sqrt {x}\right )^{n}\right )\right )d x\]

[In]

int(x^2*(a+b*ln(c*(d+e*x^(1/2))^n)),x)

[Out]

int(x^2*(a+b*ln(c*(d+e*x^(1/2))^n)),x)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.91 \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {60 \, b e^{6} x^{3} \log \left (c\right ) - 15 \, b d^{2} e^{4} n x^{2} - 30 \, b d^{4} e^{2} n x - 10 \, {\left (b e^{6} n - 6 \, a e^{6}\right )} x^{3} + 60 \, {\left (b e^{6} n x^{3} - b d^{6} n\right )} \log \left (e \sqrt {x} + d\right ) + 4 \, {\left (3 \, b d e^{5} n x^{2} + 5 \, b d^{3} e^{3} n x + 15 \, b d^{5} e n\right )} \sqrt {x}}{180 \, e^{6}} \]

[In]

integrate(x^2*(a+b*log(c*(d+e*x^(1/2))^n)),x, algorithm="fricas")

[Out]

1/180*(60*b*e^6*x^3*log(c) - 15*b*d^2*e^4*n*x^2 - 30*b*d^4*e^2*n*x - 10*(b*e^6*n - 6*a*e^6)*x^3 + 60*(b*e^6*n*
x^3 - b*d^6*n)*log(e*sqrt(x) + d) + 4*(3*b*d*e^5*n*x^2 + 5*b*d^3*e^3*n*x + 15*b*d^5*e*n)*sqrt(x))/e^6

Sympy [A] (verification not implemented)

Time = 2.69 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.96 \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {a x^{3}}{3} + b \left (- \frac {e n \left (\frac {2 d^{6} \left (\begin {cases} \frac {\sqrt {x}}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e \sqrt {x} \right )}}{e} & \text {otherwise} \end {cases}\right )}{e^{6}} - \frac {2 d^{5} \sqrt {x}}{e^{6}} + \frac {d^{4} x}{e^{5}} - \frac {2 d^{3} x^{\frac {3}{2}}}{3 e^{4}} + \frac {d^{2} x^{2}}{2 e^{3}} - \frac {2 d x^{\frac {5}{2}}}{5 e^{2}} + \frac {x^{3}}{3 e}\right )}{6} + \frac {x^{3} \log {\left (c \left (d + e \sqrt {x}\right )^{n} \right )}}{3}\right ) \]

[In]

integrate(x**2*(a+b*ln(c*(d+e*x**(1/2))**n)),x)

[Out]

a*x**3/3 + b*(-e*n*(2*d**6*Piecewise((sqrt(x)/d, Eq(e, 0)), (log(d + e*sqrt(x))/e, True))/e**6 - 2*d**5*sqrt(x
)/e**6 + d**4*x/e**5 - 2*d**3*x**(3/2)/(3*e**4) + d**2*x**2/(2*e**3) - 2*d*x**(5/2)/(5*e**2) + x**3/(3*e))/6 +
 x**3*log(c*(d + e*sqrt(x))**n)/3)

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.79 \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {1}{3} \, b x^{3} \log \left ({\left (e \sqrt {x} + d\right )}^{n} c\right ) + \frac {1}{3} \, a x^{3} - \frac {1}{180} \, b e n {\left (\frac {60 \, d^{6} \log \left (e \sqrt {x} + d\right )}{e^{7}} + \frac {10 \, e^{5} x^{3} - 12 \, d e^{4} x^{\frac {5}{2}} + 15 \, d^{2} e^{3} x^{2} - 20 \, d^{3} e^{2} x^{\frac {3}{2}} + 30 \, d^{4} e x - 60 \, d^{5} \sqrt {x}}{e^{6}}\right )} \]

[In]

integrate(x^2*(a+b*log(c*(d+e*x^(1/2))^n)),x, algorithm="maxima")

[Out]

1/3*b*x^3*log((e*sqrt(x) + d)^n*c) + 1/3*a*x^3 - 1/180*b*e*n*(60*d^6*log(e*sqrt(x) + d)/e^7 + (10*e^5*x^3 - 12
*d*e^4*x^(5/2) + 15*d^2*e^3*x^2 - 20*d^3*e^2*x^(3/2) + 30*d^4*e*x - 60*d^5*sqrt(x))/e^6)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 264 vs. \(2 (108) = 216\).

Time = 0.32 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.97 \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {60 \, b e x^{3} \log \left (c\right ) + 60 \, a e x^{3} + {\left (\frac {60 \, {\left (e \sqrt {x} + d\right )}^{6} \log \left (e \sqrt {x} + d\right )}{e^{5}} - \frac {360 \, {\left (e \sqrt {x} + d\right )}^{5} d \log \left (e \sqrt {x} + d\right )}{e^{5}} + \frac {900 \, {\left (e \sqrt {x} + d\right )}^{4} d^{2} \log \left (e \sqrt {x} + d\right )}{e^{5}} - \frac {1200 \, {\left (e \sqrt {x} + d\right )}^{3} d^{3} \log \left (e \sqrt {x} + d\right )}{e^{5}} + \frac {900 \, {\left (e \sqrt {x} + d\right )}^{2} d^{4} \log \left (e \sqrt {x} + d\right )}{e^{5}} - \frac {360 \, {\left (e \sqrt {x} + d\right )} d^{5} \log \left (e \sqrt {x} + d\right )}{e^{5}} - \frac {10 \, {\left (e \sqrt {x} + d\right )}^{6}}{e^{5}} + \frac {72 \, {\left (e \sqrt {x} + d\right )}^{5} d}{e^{5}} - \frac {225 \, {\left (e \sqrt {x} + d\right )}^{4} d^{2}}{e^{5}} + \frac {400 \, {\left (e \sqrt {x} + d\right )}^{3} d^{3}}{e^{5}} - \frac {450 \, {\left (e \sqrt {x} + d\right )}^{2} d^{4}}{e^{5}} + \frac {360 \, {\left (e \sqrt {x} + d\right )} d^{5}}{e^{5}}\right )} b n}{180 \, e} \]

[In]

integrate(x^2*(a+b*log(c*(d+e*x^(1/2))^n)),x, algorithm="giac")

[Out]

1/180*(60*b*e*x^3*log(c) + 60*a*e*x^3 + (60*(e*sqrt(x) + d)^6*log(e*sqrt(x) + d)/e^5 - 360*(e*sqrt(x) + d)^5*d
*log(e*sqrt(x) + d)/e^5 + 900*(e*sqrt(x) + d)^4*d^2*log(e*sqrt(x) + d)/e^5 - 1200*(e*sqrt(x) + d)^3*d^3*log(e*
sqrt(x) + d)/e^5 + 900*(e*sqrt(x) + d)^2*d^4*log(e*sqrt(x) + d)/e^5 - 360*(e*sqrt(x) + d)*d^5*log(e*sqrt(x) +
d)/e^5 - 10*(e*sqrt(x) + d)^6/e^5 + 72*(e*sqrt(x) + d)^5*d/e^5 - 225*(e*sqrt(x) + d)^4*d^2/e^5 + 400*(e*sqrt(x
) + d)^3*d^3/e^5 - 450*(e*sqrt(x) + d)^2*d^4/e^5 + 360*(e*sqrt(x) + d)*d^5/e^5)*b*n)/e

Mupad [B] (verification not implemented)

Time = 1.72 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.83 \[ \int x^2 \left (a+b \log \left (c \left (d+e \sqrt {x}\right )^n\right )\right ) \, dx=\frac {a\,x^3}{3}-\frac {b\,n\,x^3}{18}+\frac {b\,x^3\,\ln \left (c\,{\left (d+e\,\sqrt {x}\right )}^n\right )}{3}+\frac {b\,d\,n\,x^{5/2}}{15\,e}-\frac {b\,d^4\,n\,x}{6\,e^4}-\frac {b\,d^6\,n\,\ln \left (d+e\,\sqrt {x}\right )}{3\,e^6}-\frac {b\,d^2\,n\,x^2}{12\,e^2}+\frac {b\,d^3\,n\,x^{3/2}}{9\,e^3}+\frac {b\,d^5\,n\,\sqrt {x}}{3\,e^5} \]

[In]

int(x^2*(a + b*log(c*(d + e*x^(1/2))^n)),x)

[Out]

(a*x^3)/3 - (b*n*x^3)/18 + (b*x^3*log(c*(d + e*x^(1/2))^n))/3 + (b*d*n*x^(5/2))/(15*e) - (b*d^4*n*x)/(6*e^4) -
 (b*d^6*n*log(d + e*x^(1/2)))/(3*e^6) - (b*d^2*n*x^2)/(12*e^2) + (b*d^3*n*x^(3/2))/(9*e^3) + (b*d^5*n*x^(1/2))
/(3*e^5)